Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis.

Identifieur interne : 000611 ( Main/Exploration ); précédent : 000610; suivant : 000612

Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis.

Auteurs : Michael J. Hitchler [États-Unis] ; Frederick E. Domann

Source :

RBID : pubmed:23795822

Descripteurs français

English descriptors

Abstract

SIGNIFICANCE

Molecular oxygen is a Janus-faced electron acceptor for biological systems, serving as a reductant for respiration, or as the genesis for oxygen-derived free radicals that damage macromolecules. Superoxide is well known to perturb nonheme iron proteins, including Fe/S proteins such as aconitase and succinate dehydrogenase, as well as other enzymes containing labile iron such as the prolyl hydroxylase domain-containing family of enzymes; whereas hydrogen peroxide is more specific for two-electron reactions with thiols on glutathione, glutaredoxin, thioredoxin, and the peroxiredoxins.

RECENT ADVANCES

Over the past two decades, familial cases of amyotrophic lateral sclerosis (ALS) have been shown to have an association with commonly altered superoxide dismutase 1 (SOD1) activity, expression, and protein structure. This has led to speculation that an altered redox balance may have a role in creating the ALS phenotype.

CRITICAL ISSUES

While SOD1 alterations in familial ALS are manifold, they generally create perturbations in the flux of electrons. The nexus of SOD1 between one- and two-electron signaling processes places it at a key signaling regulatory checkpoint for governing cellular responses to physiological and environmental cues.

FUTURE DIRECTIONS

The manner in which ALS-associated mutations adjust SOD1's role in controlling the flow of electrons between one- and two-electron signaling processes remains obscure. Here, we discuss the ways in which SOD1 mutations influence the form and function of copper zinc SOD, the consequences of these alterations on free radical biology, and how these alterations might influence cell signaling during the onset of ALS.


DOI: 10.1089/ars.2013.5385
PubMed: 23795822
PubMed Central: PMC3960847


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis.</title>
<author>
<name sortKey="Hitchler, Michael J" sort="Hitchler, Michael J" uniqKey="Hitchler M" first="Michael J" last="Hitchler">Michael J. Hitchler</name>
<affiliation wicri:level="2">
<nlm:affiliation>1 Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center , Los Angeles, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1 Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center , Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Domann, Frederick E" sort="Domann, Frederick E" uniqKey="Domann F" first="Frederick E" last="Domann">Frederick E. Domann</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:23795822</idno>
<idno type="pmid">23795822</idno>
<idno type="doi">10.1089/ars.2013.5385</idno>
<idno type="pmc">PMC3960847</idno>
<idno type="wicri:Area/Main/Corpus">000731</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000731</idno>
<idno type="wicri:Area/Main/Curation">000731</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000731</idno>
<idno type="wicri:Area/Main/Exploration">000731</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis.</title>
<author>
<name sortKey="Hitchler, Michael J" sort="Hitchler, Michael J" uniqKey="Hitchler M" first="Michael J" last="Hitchler">Michael J. Hitchler</name>
<affiliation wicri:level="2">
<nlm:affiliation>1 Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center , Los Angeles, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1 Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center , Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Domann, Frederick E" sort="Domann, Frederick E" uniqKey="Domann F" first="Frederick E" last="Domann">Frederick E. Domann</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amyotrophic Lateral Sclerosis (enzymology)</term>
<term>Amyotrophic Lateral Sclerosis (genetics)</term>
<term>Animals (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mutation, Missense (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Superoxide Dismutase (genetics)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Superoxide Dismutase-1 (MeSH)</term>
<term>Superoxides (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Mutation faux-sens (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Sclérose latérale amyotrophique (enzymologie)</term>
<term>Sclérose latérale amyotrophique (génétique)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Superoxide dismutase (génétique)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Superoxide dismutase-1 (MeSH)</term>
<term>Superoxydes (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Sclérose latérale amyotrophique</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Amyotrophic Lateral Sclerosis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amyotrophic Lateral Sclerosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Sclérose latérale amyotrophique</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Superoxide Dismutase</term>
<term>Superoxides</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Superoxide dismutase</term>
<term>Superoxydes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Mutation, Missense</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Signal Transduction</term>
<term>Superoxide Dismutase-1</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Mutation faux-sens</term>
<term>Oxydoréduction</term>
<term>Stress oxydatif</term>
<term>Superoxide dismutase-1</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE</b>
</p>
<p>Molecular oxygen is a Janus-faced electron acceptor for biological systems, serving as a reductant for respiration, or as the genesis for oxygen-derived free radicals that damage macromolecules. Superoxide is well known to perturb nonheme iron proteins, including Fe/S proteins such as aconitase and succinate dehydrogenase, as well as other enzymes containing labile iron such as the prolyl hydroxylase domain-containing family of enzymes; whereas hydrogen peroxide is more specific for two-electron reactions with thiols on glutathione, glutaredoxin, thioredoxin, and the peroxiredoxins.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECENT ADVANCES</b>
</p>
<p>Over the past two decades, familial cases of amyotrophic lateral sclerosis (ALS) have been shown to have an association with commonly altered superoxide dismutase 1 (SOD1) activity, expression, and protein structure. This has led to speculation that an altered redox balance may have a role in creating the ALS phenotype.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CRITICAL ISSUES</b>
</p>
<p>While SOD1 alterations in familial ALS are manifold, they generally create perturbations in the flux of electrons. The nexus of SOD1 between one- and two-electron signaling processes places it at a key signaling regulatory checkpoint for governing cellular responses to physiological and environmental cues.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FUTURE DIRECTIONS</b>
</p>
<p>The manner in which ALS-associated mutations adjust SOD1's role in controlling the flow of electrons between one- and two-electron signaling processes remains obscure. Here, we discuss the ways in which SOD1 mutations influence the form and function of copper zinc SOD, the consequences of these alterations on free radical biology, and how these alterations might influence cell signaling during the onset of ALS.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23795822</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis.</ArticleTitle>
<Pagination>
<MedlinePgn>1590-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2013.5385</ELocationID>
<Abstract>
<AbstractText Label="SIGNIFICANCE" NlmCategory="CONCLUSIONS">Molecular oxygen is a Janus-faced electron acceptor for biological systems, serving as a reductant for respiration, or as the genesis for oxygen-derived free radicals that damage macromolecules. Superoxide is well known to perturb nonheme iron proteins, including Fe/S proteins such as aconitase and succinate dehydrogenase, as well as other enzymes containing labile iron such as the prolyl hydroxylase domain-containing family of enzymes; whereas hydrogen peroxide is more specific for two-electron reactions with thiols on glutathione, glutaredoxin, thioredoxin, and the peroxiredoxins.</AbstractText>
<AbstractText Label="RECENT ADVANCES" NlmCategory="BACKGROUND">Over the past two decades, familial cases of amyotrophic lateral sclerosis (ALS) have been shown to have an association with commonly altered superoxide dismutase 1 (SOD1) activity, expression, and protein structure. This has led to speculation that an altered redox balance may have a role in creating the ALS phenotype.</AbstractText>
<AbstractText Label="CRITICAL ISSUES" NlmCategory="RESULTS">While SOD1 alterations in familial ALS are manifold, they generally create perturbations in the flux of electrons. The nexus of SOD1 between one- and two-electron signaling processes places it at a key signaling regulatory checkpoint for governing cellular responses to physiological and environmental cues.</AbstractText>
<AbstractText Label="FUTURE DIRECTIONS" NlmCategory="CONCLUSIONS">The manner in which ALS-associated mutations adjust SOD1's role in controlling the flow of electrons between one- and two-electron signaling processes remains obscure. Here, we discuss the ways in which SOD1 mutations influence the form and function of copper zinc SOD, the consequences of these alterations on free radical biology, and how these alterations might influence cell signaling during the onset of ALS.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hitchler</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>1 Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center , Los Angeles, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Domann</LastName>
<ForeName>Frederick E</ForeName>
<Initials>FE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 ES005605</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000606290">SOD1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11062-77-4</RegistryNumber>
<NameOfSubstance UI="D013481">Superoxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D000072105">Superoxide Dismutase-1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000690" MajorTopicYN="N">Amyotrophic Lateral Sclerosis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020125" MajorTopicYN="N">Mutation, Missense</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072105" MajorTopicYN="N">Superoxide Dismutase-1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013481" MajorTopicYN="N">Superoxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23795822</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2013.5385</ArticleId>
<ArticleId IdType="pmc">PMC3960847</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neurology. 1996 Oct;47(4 Suppl 2):S36-8; discussion S38-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8858049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurol. 2011 Nov;7(11):603-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21989245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1997 Oct 15;346(2):263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9343373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 Nov 1;298(2):431-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1416974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amyotroph Lateral Scler. 2007 Apr;8(2):83-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17453634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histol Histopathol. 1989 Jan;4(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2485185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2012 Apr;37(4):835-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22219129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1999 Jul;46(1):129-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10401792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurol Res Int. 2011;2011:458427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21603028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleus. 2012 Mar 1;3(2):126-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22555596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Apr 30;398(2):320-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20184893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1997 Sep;42(3):326-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9307254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 1997 Nov;69(5):1936-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9349538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9626-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2012 Nov 12;1484:68-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23006780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 28;283(13):8340-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav. 2012 Sep;2(5):563-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23139902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 2012 Feb 15;313(1-2):75-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22005552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2007 Aug;102(3):609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17394531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2011 Sep;63(9):754-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21834058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Dec 19;322(5909):1849-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Jun;11(6):1249-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19113817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Nov-Dec;1762(11-12):1013-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1994 Jun 30;201(3):1526-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8024598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Mar 4;362(6415):59-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8446170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 1997 Nov;69(5):1945-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9349539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2011 Mar 1;20(5):1008-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21159797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Oct 1;53(7):1522-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22902630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Oct;22(20):3758-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21865601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Med. 2012 Sep;14(9):823-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22595939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Ital Biol. 2011 Mar;149(1):65-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21412717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2011 May 15;509(2):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 22;284(21):14618-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19286663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotox Res. 1999 Dec;1(2):91-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12835105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 2;103(18):7142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16636275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2002 Nov;240(1-2):47-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12487371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2012 Feb;13(2):115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22266761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Aug 15;446(1):59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22651090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1997 Apr;41(4):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9124814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12240-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8901564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2004 Apr;8(2):162-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15062777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 1999 Apr 23;265(3):159-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10327155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Aug 15;47(4):344-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19477268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 1999 Oct 12;53(6):1239-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10522879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1999 Aug 15;7(8):903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e33409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22438926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 29;281(39):28648-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16880213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(3):e5004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19325915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1997 Oct;6(11):1951-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9302276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1998 Apr 15;352(2):237-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9587411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amyotroph Lateral Scler. 2006 Dec;7(4):201-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17127558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2009 Oct;234(10):1140-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19596823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2012 Apr 1;318(6):732-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22285133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2009 Apr;22(4):639-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2002 Jan 15;32(2):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11796206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1969 Nov 25;244(22):6049-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5389100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 4;272(14):8861-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9083002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Oct 19;30(20):4198-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21847099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2006 Mar;96(5):1277-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci (Elite Ed). 2012;4:2801-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22652679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2010 Aug;39(2):198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20399857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2004 Jun 1;36(11):1355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15135171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Sep;8(9):751-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11524675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 15;284(20):13940-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Jul 10;384(4):524-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19427829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Jul;11(7):1547-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19344252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Muscle Nerve. 2004 Apr;29(4):610-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15052629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1994 Jun;3(6):981-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7951249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2011 Nov;357(1-2):143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Nov 1;13(9):1375-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1954 Oct 9;174(4432):689-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13213980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 Nov 1;298(2):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1416975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Sep 11;284(37):24679-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19586921</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Domann, Frederick E" sort="Domann, Frederick E" uniqKey="Domann F" first="Frederick E" last="Domann">Frederick E. Domann</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Hitchler, Michael J" sort="Hitchler, Michael J" uniqKey="Hitchler M" first="Michael J" last="Hitchler">Michael J. Hitchler</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000611 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000611 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23795822
   |texte=   Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23795822" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020